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Abstract: We investigate a model of large extra dimensions where the internal space has

the geometry of a hyperbolic disc. Compared with the ADD model, this model provides

a more satisfactory solution to the hierarchy problem between the electroweak scale and

the Planck scale, and it also avoids constraints from astrophysics. In general, a novel

feature of this model is that the physical results depend on the position of the brane in the

internal space, and in particular, the signal almost disappears completely if the brane is

positioned at the center of the disc. Since there is no known analytic form of the Kaluza-

Klein spectrum for our choice of geometry, we obtain a spectrum based on a combination

of approximations and numerical computations. We study the possible signatures of our

model for hadron colliders, especially the LHC, where the most important processes are

the production of a graviton together with a hadronic jet or a photon. We find that the

signals are similar to those of the ADD model, regarding both qualitative behavior and

strength. For the case of hadronic jet production, it is possible to obtain relatively strong

signals, while for the case of photon production, this is much more difficult.

Keywords: Large Extra Dimensions, Hadronic Colliders.

mailto:melbeus@kth.se
mailto:tommy@theophys.kth.se
http://jhep.sissa.it/stdsearch


J
H
E
P
0
8
(
2
0
0
8
)
0
7
7

Contents

1. Introduction 1

2. The hyperbolic disc model 3

2.1 Hyperbolic extra dimensions 3

2.2 Kaluza-Klein decomposition of the graviton 5

2.3 Approximate eigenfunctions 9

2.4 Constraints on the parameter space 11

2.5 Numerical analysis of the Kaluza-Klein spectrum 12

3. Interactions between the graviton and the SM fields 12

3.1 The interaction Lagrangian 12

3.2 Graviton production cross sections 13

3.3 LHC graviton production reactions 15

4. Numerical analysis of signals 15

4.1 p+ p→ jet + /E 17

4.2 p+ p→ γ + /E 17

5. Summary and conclusions 19

1. Introduction

The Large Hadron Collider (LHC) at CERN near Geneva, Switzerland is about to be-

come operative. The searches at the LHC for new physics beyond the Standard Model

(SM) will mainly include the potential discoveries of the Higgs boson, supersymmetry, and

extra dimensions. In this paper, we will be interested in the third issue, i.e., extra dimen-

sions. Indeed, an observation of extra dimensions would be truly revolutionary and would

completely change our view of the Universe.

The idea that spacetime could have more than four dimensions was first proposed

by Theodore Kaluza [1] and Oskar Klein [2] at the beginning of the twentieth century.

One of the most interesting features of extra dimensions is that they are not ruled out

by experiments, provided only that they are compact and small enough to have avoided

detection so far. In the scenario known as large extra dimensions, they could even be

macroscopically large.

Large extra dimensions were first proposed by Arkani-Hamed, Dvali, and Dimopoulos

(ADD) in 1998, their model being known as the ADD model [3, 4]. The novel feature of

this model is the assumption that the SM fields are confined to a so-called brane, which
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is a four-dimensional manifold residing in the full bulk spacetime. This brane is to be

identified with ordinary four-dimensional spacetime. Since the SM fields are not allowed to

probe the extra dimensions, experimental constraints on their size are avoided to a large

extent. Gravity, on the other hand, carries no SM charges and is allowed to probe the

extra dimensions. In principle, the assumption that gravity lives in a higher-dimensional

spacetime leads to sizable deviations from Newton’s inverse-square law at short distances.

However, because of the weakness of the gravitational force relative to the SM forces,

Newton’s law has only been tested down to distances of the order of micrometers, and

hence, the experimental constraints are still quite weak.

One of the main motivations for the ADD model is that it provides a solution to the so-

called hierarchy problem between the electroweak scale Mew ∼ 100 GeV and the (reduced)

Planck scale MPl ∼ 1018 GeV. Theoretically, the bare Higgs mass is expected to receive

higher-order quantum corrections of the order of MPl. This would mean that extreme

fine-tuning of the parameters would be needed in order for the electroweak scale to be as

low as 100 GeV. In fact, the ADD model provides a very elegant solution to this problem.

Since gravity really propagates in more than four spacetime dimensions, the Planck scale

that we observe through gravitational measurements is an effective scale, valid only for

energies lower than the inverse of the radius of the internal space. The Planck scale is

related to the true fundamental energy scale for gravity through the volume of the internal

space. If this volume is large enough, then the fundamental scale for gravity could actually

be as low as the electroweak scale. However, there is a problem related to this solution

in the ADD model. While the problem of the hierarchy between the electroweak scale

and the fundamental scale for gravity is solved, there is a new large hierarchy between the

electroweak scale and the inverse of the radius of the internal space. Thus, the hierarchy

problem is only reformulated as the question of why the radius of the internal space is so

large compared to the electroweak scale.

However, in the ADD model, the internal space is assumed to be flat and compactified

on a torus. Thus, one possible solution to the problem of the hierarchy between the elec-

troweak scale and the radius of the internal space is to drop this assumption and instead

consider a different geometry. Therefore, it has been argued in ref. [5] that a compact

hyperbolic internal space in particular is a better alternative than the flat geometry of the

ADD model. Note that, in some sense, the hyperbolic model is a generalization of the

ADD model.

In addition, it should be mentioned that there are other models of extra dimensions

that include branes. One of the most important models is the so-called Randall-Sundrum

(RS) model [6, 7], in which two branes are introduced and the SM fields are confined to

one of these branes only. Nevertheless, we will not consider such models further.

In this paper, we investigate large extra dimensions with the internal space being

a two-dimensional hyperbolic disc. Especially, we study two plausible signals, i.e., the

reactions p+ p→ jet +G and p+ p→ γ+G, where G denotes a Kaluza-Klein (KK) mode

of the graviton, that could be measured at the LHC using missing-energy techniques. It

should be noted that the hyperbolic disc model, like the ADD model, is only an effective

theory, which means that it is a non-renormalizable low-energy approximation of a more
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fundamental theory that is called the ultraviolet (UV) completion of the effective theory.

The phenomenology of the ADD model has been extensively investigated in the lit-

erature [8 – 15]. In particular, signals of the ADD model that are relevant for the LHC

have been studied in ref. [8]. In ref. [16], a model with a spherical internal space has been

examined. In addition, a model of RS type, which is similar to ours, was considered in

ref. [17], in the setting of discretized extra dimensions. Finally, hyperbolic extra dimensions

could have interesting implications in cosmology, which have been studied in refs. [18, 19],

though we will not discuss this issue further in this paper.

This paper is organized as follows. In section 2, we present the hyperbolic disc model

for large extra dimensions and obtain an approximate form for the KK spectrum of the

graviton in this model. Then, in section 3, we analyze the interactions between the graviton

and the SM fields that are relevant for the plausible signals of the model at the LHC. Next,

in section 4, we give our numerical results for the cross sections of the signals discussed in

section 3. Finally, in section 5, we summarize our results and present our conclusions.

2. The hyperbolic disc model

2.1 Hyperbolic extra dimensions

The model that we consider is similar to the ADD model, with the only exception that

the internal space is a two-dimensional hyperbolic disc, which is denoted H2. Hence, the

geometry of the higher-dimensional spacetime is a product M4 ×H2, where M4 denotes

four-dimensional Minkowski space. The SM fields are assumed to be confined to a four-

dimensional brane, while gravity alone probes the extra dimensions. The metric for the

six-dimensional spacetime is

(gMN ) = diag[1,−1,−1,−1,−1,−v−2 sinh2(vr)], (2.1)

where r ∈ [0, L] and ϕ ∈ [0, 2π) are polar coordinates and v is the curvature of the disc.

The coordinate system is such that r is the physical radial distance between the origin and

a point (r, ϕ). We follow the convention that indices in the full spacetime are written as

upper-case Roman letters, M = 0, 1, 2, 3, 5, 6, Minkowski indices are written as lower-case

Greek letters, µ = 0, 1, 2, 3, and indices in the internal space are written as lower-case

Roman letters, i = 5, 6. Also, x denotes the coordinates in M4 or in the full higher-

dimensional spacetime and y the coordinates in H2. Note that |det(gMN )| = |det(gij)|,
which means that there is no ambiguity in using the symbol |g| for both of these quantities.

The number of extra dimensions is denoted by d.

The most common way to hide the extra dimensions is through compactification of the

internal space as a quotient space H2/Γ, where Γ is a discrete subgroup of the isometry

group of the internal space. In this paper, we consider instead an internal space with an

explicit boundary. The main motivation for this choice is computational simplicity. For

an internal space of hyperbolic geometry, it is not possible to solve for the KK spectrum

analytically. Instead, numerical calculations are needed, and these are much simpler in

a space with a boundary than in a quotient space. We do not attempt to describe the
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origin of the boundary, but simply to investigate its possible implications. An important

consequence of this choice of geometry is that, in contrast to the ADD model, the physical

results depend on the position of the brane in the internal space.

The energy-momentum tensor corresponding to the metric (2.1) is (TMN ) =

diag(−v2, v2, v2, v2, 0, 0). As mentioned, we do not attempt to justify this solution of

Einstein’s equations. For a deeper discussion, see refs. [20, 17].

The most important advantage of a hyperbolic space is that it offers the possibility

of a more satisfactory solution to the hierarchy problem than the ADD model does, as

is described below. Another important advantage is that astrophysical constraints on the

lower bound on the fundamental mass scale, which are particularly important in the two-

dimensional ADD model [21], can be avoided to a large extent. Thus, the model can allow

for a low value of this mass scale even in the case of two extra dimensions only. The

constraints on the parameter space are described in more detail in section 2.4.

Since gravity is the only field probing the internal space, it plays an important part

in any phenomenological studies of the model. By assumption, it is governed by the six-

dimensional Einstein-Hilbert action

S(grav) = M4
∗

∫

√

|g| d6x (R− 2Λ) , (2.2)

where R is the Ricci scalar, Λ is a cosmological constant, and the mass scale M∗ is intro-

duced in order to make the action dimensionless. In the same way as in the ADD model,

M∗ replaces the Planck scale MPl as the fundamental mass scale for gravity. The two

scales are related through the equation M2
Pl = VM4

∗ [21], where V is the volume of the

internal space. However, note that the definition of the fundamental mass scale differs

between authors. In order for the model to provide a solution to the hierarchy problem,

we demand that M∗ is of the order of 1 TeV. In the ADD model, where Vd = (2πL)d, this

gives the radius L ∼ 1031/d TeV−1, which is unnaturally large in comparison to M∗ if d

is not very large. Hence, the hierarchy problem is not really solved, but simply rephrased

as the question of why the product M∗L is large. In our model, on the other hand, the

volume of the internal space is

V =

∫

dV =

∫ L

0
dr

∫ 2π

0
dϕ
√

|g| =
4π

v2
sinh2

(

vL

2

)

. (2.3)

For large vL, the volume increases exponentially as a function of the radius. This has the

consequence that the relation between the mass scale and the volume of the internal space

can be satisfied for M∗ ∼ 1 TeV without generating a large hierarchy between M∗ and L,

if v is suitably adjusted. This fact is our main motivation for the hyperbolic geometry

of the internal space. In figure 1, the product M∗L is plotted as a function of v. The

result is nearly independent of M∗ in the range that we are interested in. For v = M∗, we

obtain the lowest possible value M∗L ∼ 100, while for smaller v, the value of the product

is significantly larger. Note that our effective model is supposed to be valid only up to

energies of the order of M∗, and hence, we do not consider values of v larger than this

scale. Thus, the best possible solution to the hierarchy problem in our model is obtained
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Figure 1: The product M∗L as a function of v/M∗.

when the curvature v is of the same order of magnitude as the fundamental mass scale. In

this case, there is also no new hierarchy problem involving v.

2.2 Kaluza-Klein decomposition of the graviton

In order to investigate the phenomenology of our model, we now use the ordinary procedure

of KK decomposition to reformulate it as an equivalent four-dimensional field theory. In

this picture, the graviton field propagating in the full spacetime is represented by an infinite

KK tower of particles with different masses, called the KK modes of the graviton. The

set of masses is known as the KK spectrum, and each mass corresponds to a quantum of

momentum in the internal space.

In the ADD model with d extra dimensions, the graviton living in the full spacetime is

expanded in terms of harmonic functions exp (in̄ · ȳ/R) with corresponding masses mn̄ =

|n̄|/R. Here, n̄ is a d-dimensional vector with integer entries. In our model, the geometry is

more complicated, and this has the result that it is not possible to obtain the KK spectrum

analytically. Thus, in this section, we derive approximate expressions for the KK modes

and masses in our model.

The starting point is the equations of motion for the graviton. From the action (2.2),

it follows that the free equations of motion are the free Einstein equations, i.e., RMN = 0,

where RMN is the Ricci tensor. The dynamics of the graviton is studied by expanding these

equations to first order in a perturbation hMN about the background metric (2.1). The

perturbation hMN is interpreted as the massless spin-2 graviton field in the six-dimensional

spacetime. We are only interested in the dynamics of the four-dimensional part hµν of

the perturbation, and hence, we make the simplifying approximation of setting all other

components to zero, which has often been done in the literature [16, 17, 22]. Therefore,

the resulting metric is

gMN (x, y) =

(

ηµν + hµν(x, y)/M2
∗ 0

0 gij(y)

)

, (2.4)
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where ηµν is the Minkowski metric and the factor M−2
∗ ensures that the graviton has the

correct dimension, i.e., (mass)2. Under the assumption that the unperturbed Einstein

equations are satisfied, the detailed derivation of the linearized equations of motion has

been performed in ref. [16]. The resulting equations are

∆LBhµν = 0, (2.5)

where ∆LB ≡ ∇M∇M is the Laplace-Beltrami (LB) operator, which is the generalization

of the Laplace operator to curved spaces. In terms of a coordinate system {xM},

∆LBψ =
1
√

|g|
∂M

(

√

|g|gMN∂Nψ
)

. (2.6)

Because of the factorizable geometry, the Laplace-Beltrami operator can be written as

∆LB = �+∆H2, where � ≡ ∂µ∂µ is the d’Alembert operator in four-dimensional Minkowski

space and ∆H2 is the Laplace-Beltrami operator in the two-dimensional hyperbolic space.

In order to reformulate the theory without explicit reference to the extra dimensions, hµν

is expanded in terms of the eigenfunctions of ∆H2 , i.e.,

hµν(x, y) =
∑

n

hn,µν(x)ψn(y). (2.7)

The coefficient functions hn,µν(x) are the KK modes of the graviton, satisfying the equations

(

� +m2
n

)

hn,µν = 0, (2.8)

where m2
n is the eigenvalue corresponding to the eigenfunction ψn. Here, n denotes any

general set of Kaluza-Klein indices. From eq. (2.8), it follows thatmn has the interpretation

of the mass of the KK mode hn,µν .

Although no analytic form for the KK spectrum is known, several important results

are generally true for the spectrum of the Laplace-Beltrami operator on a Riemannian

manifold M (possibly with a boundary). It is assumed that the closure of M is connected

and compact, which is true for a hyperbolic disc. The eigenfunctions belong to the Hilbert

space L2(M) of square-integrable functions on M , with the inner product given by

〈f, g〉 =

∫

ddyf(y)∗g(y), (2.9)

where the star denotes complex conjugation. Then, if the boundary conditions fall into one

of the four categories a) Dirichlet conditions, b) Neumann conditions, c) mixed Dirichlet

and Neumann conditions, or d) periodic conditions, the following results hold [23]:

1. The set of eigenvalues consists of a sequence, 0 = λ1 < λ2 < . . .∞ in the case of

Neumann or periodic conditions, or 0 < λ1 < λ2 < . . .∞ in the other cases, and each

associated eigenspace is finite-dimensional.

2. Eigenspaces, belonging to distinct eigenvalues, are orthogonal in L2(M), which is the

direct sum of all eigenspaces.
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Thus, when the internal space is compact, the spectrum of the Laplace-Beltrami operator

is countable, and it is possible to make a KK expansion of the type (2.7).

Now, we need boundary conditions at r = 0 and r = L. At r = 0, we only have to

demand that the solutions are finite. At r = L, the possible alternatives are in principle

Dirichlet or Neumann conditions, or a combination of both. As mentioned above, the

eigenvalues are interpreted as the squared masses of the corresponding KK modes, i.e.,

λn = m2
n. According to 1., there is no massless mode in the spectrum for Dirichlet or

mixed conditions, while for Neumann conditions there is such a mode. Hence, in order to

obtain the correct low-energy behavior, we impose Neumann conditions at r = L.

We also make use of the following result regarding the asymptotic distribution of

the eigenvalues, known as Weyl’s asymptotic formula: If N(λ) denotes the number of

eigenvalues in the interval [0, λ], counted with multiplicity, then [24]

lim
λ→∞

N(λ)

λd/2
=
ωdVd

(2π)d
, (2.10)

where d is the dimensionality of the manifold M , ωd is the area of the unit disc in R
d, and

Vd is the volume of M . Taking M to be the hyperbolic disc, and using eq. (2.3), we obtain

the result

lim
m→∞

N(m2)

m2
=

sinh2 (vL/2)

v2
. (2.11)

We now find the general solution of the eigenvalue equation ∆H2ψ = m2ψ. These

eigenfunctions contain important information on the coupling of the graviton KK modes

to SM fields, and they are also the starting point for our numerical investigations of the KK

spectrum. For the case of hyperbolic geometry, the Laplace-Beltrami operator is given by

∆H2ψ = − 1

sinh(vr)

∂

∂r

[

sinh(vr)
∂ψ

∂r

]

− v2

sinh2(vr)

∂2ψ

∂ϕ2
. (2.12)

Introducing the dimensionless parameter τ ≡ vr, we obtain the eigenvalue equation

− 1

sinh(τ)

∂

∂τ

[

sinh(τ)
∂ψ

∂τ

]

− 1

sinh2(τ)

∂2ψ

∂ϕ2
= k2ψ, (2.13)

where k2 ≡ m2/v2. In order to solve this equation, we first expand ψ in the angular

direction

ψ(τ, ϕ) =

∞
∑

ℓ=−∞
Tℓ(τ)e

iℓϕ, (2.14)

and find the radial equation

− 1

sinh(τ)

d

dτ

[

sinh(τ)
dTℓ

dτ

]

− ℓ2

sinh2(τ)
Tℓ = k2Tℓ. (2.15)

Introducing x ≡ cosh(τ), we have the equation

d

dx

[

(1 − x2)
dTℓ

dx

]

+

[

ν(ν + 1) − ℓ2

1 − x2

]

Tℓ = 0, (2.16)
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where ν(ν + 1) ≡ −k2. This is Legendre’s associated equation. Its solutions are the

associated Legendre functions of the first and second kind [25]. Note that these are not

the same as the functions encountered e.g. in spherical harmonics, since the domain here is

[1,∞) rather than [−1, 1]. In particular, in this case, ν is not restricted to integer values in

the interval [−ℓ, ℓ]. The associated Legendre functions of the second kind are divergent at

x = 1, and can therefore be discarded as non-physical solutions. The associated Legendre

functions of the first kind are the physically acceptable solutions. In what follows, they

will be referred to simply as the Legendre functions and they will be denoted by P ℓ
ν . They

can be expressed, up to normalization, as

P ℓ
ν (x) =

(

x+ 1

x− 1

)|ℓ|/2

F

(

−ν, ν + 1, 1 + |ℓ| , 1 − x

2

)

, (2.17)

where F is the hypergeometric function. It is common to introduce the parametrization

ν = −1/2 + iρ, since for real ρ, P ℓ
−1/2+iρ is real. Note that, since ν = −1/2 ± iρ both give

the same value for ν(ν + 1), we only need to consider values of ρ in e.g. the half-plane

Re(ρ) ≥ 0. In terms of the parameter ρ, the eigenvalues are

m2
ρℓ = v2

(

1

4
+ ρ2

)

. (2.18)

Finally, the radial eigenfunctions are

Tρℓ(r) = P ℓ
− 1

2
+iρ

[cosh(vr)] = tanh|ℓ|
(vr

2

)

F

[

1

2
− iρ,

1

2
+ iρ, 1 + |ℓ|,− sinh2

(vr

2

)

]

.

(2.19)

An important consequence of this result is that, since F (a, b, c, 0) = 1, Tρℓ(0) = 0 for ℓ 6= 0.

Hence, most of the eigenfunctions are equal to zero at the origin. As is demonstrated in

section 3.1, the couplings of the KK modes to SM fields are proportional to the modulus

squared of the eigenfunctions, evaluated at the position of the brane. Thus, for the most

symmetric location of the brane, at τ = 0, only the ℓ = 0 modes couple to SM fields.

In this case, it is not possible to probe the extra dimensions with the methods that are

investigated in this paper, as is discussed in section 4.

If the parameter ρ is restricted to real values, then the relation (2.18) implies that

the spectrum is restricted to the interval [v/2,∞). However, there is a priori nothing to

prevent ρ from being complex. The spectrum of the Laplace-Beltrami operator is real and

non-negative, and m = 0 is in one-to-one correspondence with the constant eigenfunction,

but there could possibly exist eigenvalues in the interval (0, v/2), corresponding to values of

ρ in the imaginary interval (0, i/2). We have numerically investigated the zeros of dTρℓ/dτ

for ρ in this interval and found none. However, we have not been able to prove this

result, and such a proof would, of course, be of interest. Nevertheless, we assume in the

remainder of this paper that the KK spectrum lies in the interval [v/2,∞). Thus, under

this assumption, there is a mass gap between zero and the mass m1 ≡ v/2 of the first KK

mode. The significance of this result is discussed in section 2.4.

As eigenfunctions, the normalization of the functions Tρℓ is not determined. It is

decided by the normalization of the Lagrangian kinetic terms of the individual KK modes.

– 8 –
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As the higher-dimensional kinetic terms involving derivatives with respect to r and ϕ

become mass terms in the four-dimensional picture, those terms are irrelevant for the

following discussion. Since we will later use results for the ADD model from ref. [8], we

follow their convention, where the relevant kinetic terms are of the forms

L(kin)
n̄ =

1

2
∂λhµν

−n̄∂λhn̄,µν . (2.20)

Furthermore, since, in the ADD model, hµν(x, ȳ) =
∑

n̄ hn̄,µν(x) exp (in̄ · ȳ/R) and hµν is

real, we must have hµν
−n̄ = hµν∗

n̄ , which means that

L(kin)
n̄ =

1

2
∂λhµν∗

n̄ ∂λhn̄,µν . (2.21)

In our model, we have

S(kin) =

∫

√

|g|d6x
1

2
∂λhµν∂λhµν

=

∫

d4x

∫

√

|g|d2y
1

2
∂λ





∑

ρ,ℓ

hµν
ρℓ ψρℓ



 ∂λ





∑

ρ′,ℓ′

hρ′ℓ′,µνψρ′ℓ′





=
∑

ρ,ℓ

∑

ρ′,ℓ′

∫

d4x
1

2
∂λhµν

ρℓ ∂λhρ′ℓ′,µν

∫

√

|g|d2yψρℓψρ′ℓ′

=
∑

ρ,ℓ

∑

ρ′,ℓ′

∫

d4x
1

2
∂λhµν

ρℓ ∂λhρ′ℓ′,µνδρρ′δ−ℓ,ℓ′‖ψρℓ‖2

=
∑

ρ,ℓ

∫

d4x‖ψρℓ‖2 1

2
∂λhµν

ρ,−ℓ∂λhρℓ,µν

=
∑

ρ,ℓ

∫

d4x‖ψρℓ‖2 1

2
∂λhµν

ρℓ
∗
∂λhρℓ,µν , (2.22)

where in the last equality we have used the fact that ψρ,−ℓ = ψ∗
ρℓ, which follows from the

results (Tρ,−ℓ)
∗ = Tρ,−ℓ = Tρℓ and exp (iℓϕ)∗ = exp (−iℓϕ). Since hµν is real, this result

implies that hµν
ρ,−ℓ = hµν

ρℓ
∗
. The δ−ℓ,ℓ′ , rather than a δℓℓ′ , in the fourth line comes from the

fact that there is no complex conjugation on ψρℓ in the third line. Thus, the normalization

of the individual kinetic terms is the same as in eq. (2.21), if we set ‖ψρℓ‖2 = 1, which

determines the overall normalization of the eigenfunctions.

2.3 Approximate eigenfunctions

In principle, all the information about the eigenfunctions is given by eq. (2.19). However, in

order to better understand their behavior, it is useful to consider a certain approximation

of them, which has been adapted from a similar case in ref. [26], and is based on the

Wentzel-Kramers-Brillouin (WKB) approximation [27], familiar from quantum mechanics.

The approximate expressions for the eigenfunctions given by this approximation also have

the advantage that their numerical evaluation requires significantly less computer power

than the exact expressions, which has been important for the calculations in section 4. In
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order to find these approximate expressions, we introduce the auxiliary functions uρℓ(τ) ≡
√

sinh(τ)Tρℓ(τ). In terms of uρℓ, eq. (2.15) becomes

−d2uρℓ

dτ2
+
ℓ2 − 1/4

sinh2(τ)
uρℓ = ρ2uρℓ. (2.23)

This equation has the form of a one-dimensional Schrödinger equation with energy

E = ρ2 and potential V (τ) = (ℓ2 − 1/4)/ sinh2(τ). Its solutions have differing quali-

tative behavior depending on the relative magnitudes of E and V (τ). For E > V (τ),

they are oscillatory, while for E < V (τ), there is one increasing and one decreas-

ing solution. The turning point τ0 between the two regions, given by the equation

E = V (τ0), is τ0 = arsinh
[

√

(ℓ2 − 1/4)/ρ2
]

. For τ ≪ 1, the solutions are approximately

uρℓ(τ) = sinh±|ℓ|(τ). The decreasing solutions diverge at the origin, and correspond to

the Legendre functions of the second kind, while the increasing ones correspond to the

Legendre functions of the first kind.

Now, for τ > τ0, the WKB approximation gives the solutions

uρℓ(τ) =
sin [Θ(τ)]

[

ρ2 − ℓ2−1/4

sinh2(τ)

]1/4
, τ > τ0, (2.24)

where

Θ(τ) =

∫ τ

dτ ′
√

ρ2 − ℓ2 − 1/4

sinh2(τ ′)
≈ ρτ + ϕ0. (2.25)

Here, we have also used the fact that the eigenfunctions are real. For τ < τ0, Tρℓ is

small and is approximated as zero, with the understanding that there are no zeros of the

derivative in this region. In order for the eigenfunctions to be continuous at τ0, we set the

phase ϕ0 = ρτ0. Thus, the approximate expression for Tρℓ that we use is given by

Tρℓ(τ) =







sin[ρ(τ−τ0)]

[ρ2 sinh2(τ)−(ℓ2−1/4)]
1/4
, τ ≥ τ0

0, τ < τ0.
. (2.26)

The condition for the WKB approximation to hold is

1

2π

∣

∣

∣

∣

dλ

dτ

∣

∣

∣

∣

≪ 1, (2.27)

where

λ(τ) =
2π

[E − V (τ)]1/2
=

2π sinh(τ)

[ρ2 sinh2(τ) − (ℓ2 − 1/4)]1/2
. (2.28)

This function blows up at τ = τ0, where the WKB approximation is generally not valid.

A sample of the approximate functions, as well as the corresponding exact functions,

are presented in figure 2. We have plotted the squared absolute values of these functions,

since these are the quantities that enter in the physical results. For small vr, where the

exact functions have not yet started to increase appreciably, the approximations agree with

the exact functions to good accuracy. As expected, the agreement is worse in the region
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Figure 2: The squared absolute values of the approximate eigenfunctions (2.26) compared to the

exact eigenfunctions (2.19) as functions of vr. The solid curves are the exact functions and the

dashed curves are the approximate functions. In the left panel, the functions are plotted for the

parameter values ρ = 5 and ℓ = 2, whereas in the right panel, they are plotted for the parameter

values ρ = 2 and ℓ = 50.

around τ = τ0, where the approximate functions start to oscillate. From the first minimum

in the oscillating region and on, the approximation is once again very accurate, and the

agreement increases with increasing vr. Also, our numerical investigations indicate that

the approximation becomes better as the parameters ρ and ℓ are increased.

2.4 Constraints on the parameter space

In the ADD model, there is only a single free parameter, which can be taken to be the

fundamental mass scale M∗. In our model, on the other hand, the curvature v of the internal

space and the position of the brane in the radial direction τb enter as two additional free

parameters. The mass scale M∗ is bounded from below to M∗ & 1 TeV by the fact that no

signs of quantum gravitational effects have been found in experiments up to this scale [28].

On the other hand, M∗ cannot be much larger than 1 TeV if the model is to provide a

solution to the hierarchy problem. The fact that our model is an effective theory, valid

only up to energy scales of the order of M∗, means that we should not consider values of

v larger than this scale.

Further constraints can be found by demanding that the model should not be in conflict

with other well-established physical phenomena. In the context of the ADD model, a

number of such constraints have been analyzed in ref. [21]. In particular, strong constraints

come from astrophysics and cosmology. If sufficiently light, the lightest KK mode could

be produced in large numbers in high-temperature systems, such as supernovae, and carry

away large amounts of energy. This could potentially alter the evolution of the system in

a non-acceptable way. For the ADD model, this places important constraints on M∗ [29].

In our model, the mass of the lightest KK mode is bounded from below by m1 = v/2.

If v is chosen so that this mass is larger than the temperature of a supernova, which for

SN1987A is about 50 MeV, then the constraints are completely avoided. This is achieved

for v > 100 MeV. Note that this bound has not been optimized, but merely gives an

order-of-magnitude estimate. Of course, the bound also depends on M∗. However, a more
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detailed analysis of the exact constraints on the full parameter space is beyond the scope

of this paper. As has been mentioned earlier, we only consider values of v of the order of

M∗, in order to obtain a satisfactory solution to the hierarchy problem. Since M∗ is of

the order of 1 TeV, v is far larger than 100 MeV. In the same way, we consider τb to be

unrestricted to lie anywhere in the range [0, τmax], regardless of M∗ and v.

2.5 Numerical analysis of the Kaluza-Klein spectrum

Since it is not possible to obtain the KK spectrum of the graviton analytically, we have

used a combination of numerical calculations and Weyl’s asymptotic formula, as well as

the form of the approximate solutions (2.26) obtained by using the WKB approximation.

We assume that there are no zeros of the derivative of Tρℓ(τ) for τ < τ0. Thus, for a given

value of ℓ, this means that any allowed value of ρ has to be such as to fulfill the relation

ρ2 sinh2(τmax) ≥ ℓ2 − 1/4, (2.29)

where τmax ≡ vL.

Performing the numerical calculations, we have found that the spectrum increases

logarithmically for small m, i.e., mn ∼ log(n). Comparing it with the result of Weyl’s

asymptotic formula, which increases as mn ∼ √
n, it is in fact nearly constant at m ≈

m1 = v/2. This is expected, since the spectrum from Weyl’s formula starts out at m = 0,

while the true spectrum starts out at the non-zero value m1. Hence, the true spectrum has

to increase slower than the approximate formula in order for the two results to converge

for large n. We have not been able to solve numerically for the spectrum up to values

where the two results converge. Instead, we have resorted to solving numerically only for a

manageable number, O(103), of eigenvalues and extrapolating these results up to a point

where Weyl’s formula is supposed to hold. This point is taken as the intersection between

the extrapolated results from the numerical solution and the result from Weyl’s formula.

Since the spectrum is nearly constant at m = m1 in the lower regime, our final result is

N(m2) =
sinh2(vL/2)

v2
m2Θ(m−m1), (2.30)

where Θ(x) is the Heaviside step function.

3. Interactions between the graviton and the SM fields

3.1 The interaction Lagrangian

In order to study interactions between the KK modes of the graviton and the SM fields,

we need the interaction terms in the action. In the general case when hMi 6= 0, the

higher-dimensional coupling between gravity and the SM fields to first order in hMN/M
2
∗

is given by

S(int) =
1

M2∗

∫

d4x

∫

d2y TMN (x, y)hMN (x, y). (3.1)

Because of the confinement of the SM fields to the brane at y = yb, the energy-momentum

tensor is TMN(x, y) = δM
µ δN

ν T
µν(x)δ(2)(y− yb) (no summation), where δ(2)(y) is the Dirac
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delta function and T µν(x) is the ordinary SM energy-momentum tensor. Inserting this

expression into eq. (3.1) and using the KK expansion (2.7) yields the individual interaction

terms

S
(int)
ρℓ =

1

M2∗

∫

d4xT µν(x)
1

‖ψρℓ‖
hρℓ,µν(x)ψρℓ(yb), (3.2)

where we have explicitly displayed the normalization of ψρℓ. Using the relation

M2
Pl = VM4

∗ , these interaction terms can be rewritten as

S
(int)
ρℓ =

cρℓ

MPl

∫

d4xT µν(x)hρℓ,µν(x), (3.3)

where

cρℓ ≡
ψρℓ(yb)V

1/2

‖ψρℓ‖
, (3.4)

which are dimensionless numbers characterizing the coupling strengths. In the ADD

model, the corresponding constants cn̄ = exp (in̄ · ȳ/R) are unimodular, and hence,

they do not affect any physical results. In our model, the numbers cρℓ are generally

not unimodular, which has the results that different KK modes have different coupling

strengths and that these coupling strengths depend on the position of the brane in the

internal space. However, note that the angular parts of the eigenfunctions, exp (iℓϕ), are

still unimodular, and thus, cρℓ only depends on the radial position of the brane and not on

the angular position. From the above discussion, it follows that the constants cρℓ provide

a parametrization of the difference between the ADD model and the hyperbolic disc model

in the coupling strengths of the individual KK modes.

3.2 Graviton production cross sections

Since the interaction terms in the action (3.3) differ from those in the ADD model only

by the constant factors cρℓ, the Feynman rules for the hyperbolic disc model are the same

as those for the ADD model, except that the vertex factors involving KK modes of the

graviton are multiplied by these same factors. The Feynman rules for the ADD model are

given in ref. [8], and since our normalization convention agrees with theirs, the results can

be used to obtain the Feynman rules for the hyperbolic disc model. Note, though, that their

results are expressed in terms of the quantity MD, which is related to M∗ as MD =
√

2πM∗.

Since the amplitudes for processes involving KK modes of the graviton are suppressed

by the Planck scale, the cross sections for production of a single KK mode are extremely

low. However, at sufficiently high energies, a large number N(m2
max) = N(E2

cm) ≈
v−2 sinh2 (vL/2)E2

cm of KK modes are kinematically available. The cross sections for pro-

duction of any available KK mode are suppressed only by powers of the higher-dimensional

gravitational mass scale M∗, which could be significantly smaller than the ordinary Planck

scale. Once produced, a KK mode is extremely weakly interacting and consequently it

appears as missing energy in detectors.

The cross section for production of any KK mode is obtained by summing over the

kinematically available individual cross sections, i.e.,

dσ

dt
=
∑

m≤√
s

dσm

dt
, (3.5)
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where s and t are the usual Mandelstam variables. The standard way to treat this sum is

to observe that the mass splittings are small in relation to any other relevant mass scale. In

the ADD model, the mass splittings are ∆m ∼ R−1, while in our model, the mass splittings

are ∆m ∼ v sinh−1 (vL/2), which is small for the regions of the parameter space that we

consider. Thus, the sum can be approximated to good accuracy by an integral, i.e.,

dσ

dt
≈
∫

dmn(m)
dσm

dt
, (3.6)

where n(m) is the density of states for the KK modes. Using the approximate expression

for the spectrum given in eq. (2.30), the density of states is

n(m) =
dN(m2)

dm
= δ(m−m1)

sinh2(vL/2)

v2
m2 + Θ(m−m1)

2 sinh2(vL/2)

v2
m. (3.7)

There is a technical problem related to the evaluation of the integral (3.6). While the

differential cross section dσm/dt and the density of states n(m) are given as functions of

m, the constants cρℓ are only available as functions of the KK indices ρ and ℓ, and we have

no analytic relation between these quantities. Hence, in order to evaluate the integral,

we need to numerically translate the constants into functions of m. This can be done by

averaging cρℓ over the allowed values of ℓ for each value of ρ, and using the relation (2.18)

to express ρ in terms of m. From eq. (2.29), it follows that, for fixed ρ, ℓ is restricted to

the interval [−ℓmax, ℓmax], where ℓmax =
√

ρ2 sinh2(τmax) + 1/4. Now, in order to perform

the averaging, an estimate of the density of eigenvalues for given ρ and ℓ is needed. The

approximate eigenfunctions (2.26) that we employ consist of a decaying factor and an

oscillating factor sin[ρ(τ − τ0)]. Since the eigenvalues are determined by the positions of

the zeros of dTρℓ/dτ |τ=τb
as a function of ρ, we consider the eigenfunctions evaluated at

the position of the brane, i.e., at τ = τb. In addition, since τ0 = arsinh
[

√

(ℓ2 − 1/4)/ρ2
]

is a slowly varying function of ρ and ℓ, we may locally consider the oscillating factor, seen

as a function of ρ, to have a well-defined wave number equal to τb − τ0. Thus, the density

of zeros of Tρℓ(τb) as a function of ρ is approximately proportional to τb − τ0. We are

interested in the zeros of the derivative dTρℓ/dτ |τ=τb
, and we assume that there is exactly

one such zero between each pair of zeros of Tρℓ(τb). Hence, for given ρ and ℓ, the density

of eigenvalues is also proportional to τb − τ0. Using this result, the averaging has been

performed. A sample of the resulting functions is shown in figure 3. Note that in the

resulting coefficients cm, the rapid oscillations of the eigenfunctions have been washed out,

leaving smooth functions.

Finally, we need to take into account that the colliding particles are protons, while

the cross sections are given on the more fundamental quark level. Cross sections for such

processes are calculated using the parton model. The total cross section for a high-energy

hadron-hadron collision can be written as a convolution of two parton distribution functions

with a hard-scattering parton-level cross section σ̂ [30],

σA+B→X(s) =
∑

a,b

∫ 1

0
dx1

∫ 1

0
dx2fa/A(x1, ŝ)fb/B(x2, ŝ)σ̂a+b→X(ŝ), (3.8)
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Figure 3: The squared absolute values of the averaged coefficients |cm|2 as functions of m. The

black curves correspond to the parameter value τb = τmax and the gray ones correspond to the value

τb = τmax/2. As a reference, the corresponding trivial results for the ADD model are also shown as

dotted lines. In the left panel, the results are plotted for M∗ = 1 TeV, whereas in the right panel,

they are plotted for M∗ = 2 TeV.

where fa/A is the parton distribution function for the parton a in the hadron A, s is the

squared center-of-mass energy in the hadron-hadron system, x1 and x2 are the momentum

fractions of the hadrons carried by the respective partons, and ŝ ≡ x1x2s is the effective

center-of-mass energy squared in the parton-parton system. In principle, the sum is to

be taken over all parton species, i.e., quarks, anti-quarks, and gluons, although the heavy

quarks, i.e., charm, bottom, and top, are usually neglected. In this paper, we use the

CTEQ6M [31] parton distribution functions.

3.3 LHC graviton production reactions

We consider the reactions p+p→ jet+G and p+p→ γ+G, where G denotes a KK mode

of the graviton. For the ADD model, the individual differential cross sections for these

reactions are given in ref. [8]. On the parton level, the reaction p + p → jet + G consists

of the three subprocesses q + q̄ → g + G, q + g → q + G, and g + g → g + G, while the

reaction p+ p → γ+G consists of the single subprocess q+ q̄ → γ+G. Since each of these

subprocesses includes a single vertex involving a graviton, the cross sections for our model

are obtained by multiplying the results for the ADD model by the constant factors |cρℓ|2.
As mentioned above, the produced gravitons are very weakly interacting, and hence,

they appear as missing energy in detectors. Thus, the observed reactions are p+p→ jet+ /E

and p+ p→ γ + /E, respectively, where /E denotes the missing energy.

4. Numerical analysis of signals

In this section, we present the predictions of our model. For both cases of jet and photon

production, we have calculated differential cross sections with respect to cos(θ), where θ is

the angle between the proton beam and the outgoing jet/photon, as well as with respect

to pT,jet/γ , which is the momentum of the jet or photon perpendicular to the beam. All of

our results are presented for
√
s = 14 TeV.
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Since we consider high-energy processes, the partons are approximated as being mass-

less. As there are massless particles in the final states in both of the processes that we

study, the expressions for the cross sections suffer from collinear divergences in the limit of

zero transverse momentum of these particles. In order to avoid these singularities, we im-

pose a lower cut-off on the transverse momentum, pT,γ/jet ≥ pmin
T . This cut-off also serves

to increase the signal-to-background ratio. Because of the finite size of the detector, there

is an upper cut-off on the longitudinal rapidity (or pseudorapidity) η = artanh [cos(θ)] of

these outgoing particles, i.e., |nγ/jet| ≤ ηmax. We have used the value ηmax = 2.5 for all

measurements considered [32].

It is important to take into consideration the fact that the theory is an effective one

only, which is supposed to break down at large energies, above some cut-off scale. Without

knowledge of the UV completion of the effective theory, it is not possible to determine this

cut-off scale exactly. We follow ref. [8] and trust our results only up to the mass scale

MD =
√

2πM∗. We also follow their method of analyzing the validity of the results, i.e.,

by computing cross sections that are set to zero for ŝ > M2
D, and compare these to the

naive results. In regions where the results agree, almost all of the contributions to the

cross sections come from subprocesses with an effective center-of-mass energy lower than

the fundamental mass scale, and hence, these results can be trusted. These regions depend

on the chosen set of parameters, and differ between jet and photon reactions. In general,

the results become better for higher M∗, but at the same time the cross sections decrease.

Hence, we need to make a trade-off between these two competing effects.

As discussed in section 2, we only consider values of v of the order of M∗. However, for

v = M∗, it is difficult to to obtain valid results for the effective model. Hence, for all the

results presented, we have have set v = M∗/2, in which case it is possible to obtain valid

results. Complementary to these considerations of internal spaces with large curvature,

internal spaces with small curvature have been considered in ref. [33].

The position of the brane in the radial direction is not constrained. However, as

discussed in section 2, in the case that the brane is positioned at the center of the disc,

only the ℓ = 0 KK modes couple to the SM fields. This means that, while the number of

kinematically available KK modes is typically of the order of 1017 for the cases that we

consider, in this special case this number is effectively reduced to a number of the order of

100. Hence, only a negligibly small fraction of the KK modes are effectively available in

this case, and the signal will be far too weak to be observable at the LHC. In order to give

a better sense for the range of rates possible in the model, it could still be interesting to

obtain quantitative results for this special case. However, this analysis is complicated by

the fact that the effective mass splittings between the active KK modes become too large

to allow us to employ the approximation (3.6) when calculating the total cross section, and

thus, we have not performed any such calculations. For each fixed set of values for the rest

of the parameters in the model, we have presented our results for two different values of

the position of the brane, at τb = τmax and at τb = τmax/2.

Note also that, as our calculations are performed to leading order only, we do not take

final state radiation into account.
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4.1 p+ p→ jet + /E

For the jet, we have chosen a transverse momentum cut-off pmin
T = 750 GeV. The results

are presented for two different values of the fundamental mass scale, M∗ = 1.5 TeV and

M∗ = 2 TeV. The main background comes from the processes p + p → jet + Z and

p+p→ jet+W , with the Z decaying into a neutrino-antineutrino pair and the W decaying

into a neutrino and a lepton, respectively [34]. In the case ofW production, the background

can be distinguished from the signal if a lepton in the outgoing state is observed. Taking this

into account, simulations of the background using PYTHIA [35] shows that the background

fromW production is small in comparison to the background from Z production, and hence,

we have only performed accurate simulations for Z production.

The differential cross sections dσ/dcos(θ) and dσ/dpT,jet are given in figures 4 and 5,

respectively. As a reference, we have also plotted the corresponding cross sections for the

ADD model with the same value for M∗. The cross sections for our model resemble those

of the ADD model and are of the same order of magnitude. For τb = τmax, the result is

almost indistinguishable from the ADD results for both M∗ = 1.5 TeV and M∗ = 2 TeV.

As expected, the cross sections decrease with increasing M∗, while the discrepancy between

the naive and the truncated cross sections increase with decreasing M∗. Also, the signals

have the same behavior as the background. For all the demonstrated results, the signals

are larger than the background, although not by much for M∗ = 2 TeV. However, for

M∗ = 1.5 TeV, the discrepancies between the naive and the truncated cross sections are

quite large.

Note that there is also a difference between results for different values of τb. For both

values of M∗ shown, the cross sections are larger for τb = τmax.

For M∗ = 1.5 TeV, the integrated cross sections are of the order of 200 fb. Thus,

for an integrated luminosity at the LHC of 10 fb−1 or 100 fb−1, the expected number of

events is of the order of 2000 or 20000, respectively, whereas for M∗ = 2 TeV, the cross

sections are of the order of 50 fb, and the corresponding number of events are of the order

of 500 or 5000.

4.2 p+ p→ γ + /E

For the photon, we have chosen a transverse momentum cut-off pmin
T = 300 GeV. The

results are presented for M∗ = 1 TeV and M∗ = 1.5 TeV. The main background is anal-

ogous to the background for the jet production process, i.e., coming from the processes

p + p → γ + Z and p + p → γ + W [34]. In the same way as in the jet case, the back-

ground from Z production is dominant, and we have only considered this contribution to

the background.

The differential cross sections dσ/dcos(θ) and dσ/dpT,γ are presented in figures 6 and 7,

respectively. As for the case of jet production, the cross sections resemble those of the ADD

model and also have a similar behavior to the background. In this case, the results for

τb = τmax/2 are very similar to the results for the ADD model. In comparison to the jet

production case, it is much more difficult to find a region where the effective theory is valid
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Figure 4: The differential cross section for graviton plus jet production with respect to cos(θ).

The solid curves correspond to the parameter value τb = τmax and the dashed curves correspond to

the value τb = τmax/2. For each of these two values, the thick lines are the naive cross sections and

the corresponding thin lines are the truncated ones. The dotted lines are the corresponding results

for the ADD model with the same value for M∗, and the gray shaded area is the SM background.

In the left panel, the results are plotted for M∗ = 1.5 TeV, whereas in the right panel, they are

plotted for M∗ = 2 TeV.
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Figure 5: The differential cross section for graviton plus jet production with respect to pT. The

solid curves correspond to the parameter value τb = τmax and the dashed curves correspond to the

value τb = τmax/2. For each of these two values, the thick lines are the naive cross sections and

the corresponding thin lines are the truncated ones. In the left panel, the results are plotted for

M∗ = 1.5 TeV and in the right panel, they are plotted for M∗ = 2 TeV.

and the signal is not much smaller than the background. In particular, in the case that

M∗ = 1.5 TeV, the background is much larger than the signal.

For M∗ = 1 TeV, the integrated cross sections are of the order of 10 fb. Thus for an

integrated luminosity at the LHC of 10 fb−1 or 100 fb−1, the expected number of events

is of the order of 100 or 1000, respectively, whereas for M∗ = 1.5 TeV, the cross sections

are of the order of 1 fb, and the corresponding number of events are of the order of 10 or

100. Comparing to the jet production case, the cross sections are much smaller, about two

orders of magnitude for M∗ = 1.5 TeV.
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Figure 6: The differential cross section for graviton plus photon production with respect to cos(θ).

The solid curves correspond to the parameter value τb = τmax and the dashed curves correspond

to the value τb = τmax/2. For each of these two values, the thick lines are the naive cross sections

and the corresponding thin lines are the truncated ones. In the left panel, the results are plotted

for M∗ = 1 TeV, whereas in the right panel, they are plotted for M∗ = 1.5 TeV.
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Figure 7: The differential cross section for graviton plus photon production with respect to pT.

The solid curves correspond to the parameter value τb = τmax and the dashed curves correspond

to the value τb = τmax/2. For each of these two values, the thick lines are the naive cross sections

and the corresponding thin lines are the truncated ones. In the left panel, the results are plotted

for M∗ = 1 TeV, whereas in the right panel, they are plotted for M∗ = 1.5 TeV.

5. Summary and conclusions

In this paper, we have considered a model for large extra dimensions based on hyperbolic

geometry. More specifically, the internal space has the geometry of a hyperbolic disc with

constant curvature. This model is in some sense a generalization of the ADD model. Its

main advantages are that it provides a more satisfactory solution to the hierarchy problem

than the ADD model, and that constraints from astrophysics on the size of the extra

dimensions are avoided.

We have investigated the possible experimental signatures of the model at the LHC.

The two main reactions that could be relevant for the LHC are p + p → jet + G and
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p+p → γ+G, where G denotes a KK mode of the graviton. As the KK modes are extremely

weakly interacting, the corresponding amplitudes being suppressed by the Planck scale, the

gravitons produced in these reactions are not detected, but appear as missing energy in

detectors. Since there is no known analytic form for the KK spectrum when the internal

space is hyperbolic, we have employed a combination of approximations and numerical

investigations to obtain our results.

We have found that some regions of the parameter space could be probed by the LHC,

using the jet production channel. In this reaction, the integrated cross sections are typically

of the order of 100 fb for the cases that have been studied. For the reaction involving the

production of a photon, the discovery potential is significantly weaker than in the former

case. For large M∗, the background is much larger than the signal, while for smaller M∗,
the applicability of the effective theory breaks down and the predictions cannot be trusted.

Also, the integrated cross sections are about two orders of magnitude smaller than for

the jet production case, typically of the order of 1 fb. For both cases of jet and photon

production, the cross sections have the same qualitative behavior and are of the same order

of magnitude as the cross sections for the ADD model with the same value for M∗. In fact,

the signals of our model are in some cases indistinguishable from signals of the ADD model.

In addition, the parameter space of our model is much larger than that of the ADD model,

our model having three free parameters with only weak experimental constraints.

A novel feature of our model, in comparison to the ADD model, is that its physical

predictions depend on the position of the brane in the internal space. In particular, in the

case that the brane is placed at the center of the disc, i.e., at τ = 0, most of the coupling

constants between the KK modes of the graviton and SM fields vanish. This has the result

that in this case the experimental signatures of the model would be far too weak to be

observable in collider experiments.

In conclusion, we have found that the most promising channel for the detection of

hyperbolic extra dimensions at the LHC is the production of a KK mode of the graviton

together with a single hadronic jet. In the case when the fundamental mass scale M∗ as

well as the curvature v are of the order of 1 TeV, a solution to the hierarchy problem is

obtained. Depending on the position of the brane in the radial direction τb, it may also be

possible to obtain an observable signal at the LHC.
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